Archive for the ‘Bio’ Category

h1

Seeing In The Pitch-Dark Is All In Your Head

November 8, 2013

A few years ago, cognitive scientist Duje Tadin and his colleague Randolph Blake decided to test blindfolds for an experiment they were cooking up.

They wanted an industrial-strength blindfold to make sure volunteers for their work wouldn’t be able to see a thing. “We basically got the best blindfold you can get.” Tadin tells Shots. “It’s made of black plastic, and it should block all light.”
Tadin and Blake pulled one on just to be sure and waved their hands in front of their eyes. They didn’t expect to be able to see, yet both of them felt as if they could make out the shadowy outlines of their arms moving.
Being scientists, they wondered what was behind the spooky phenomenon. “We knew there wasn’t any visual input there,” Tadin says. They figured their minds were instinctively filling in images where there weren’t any.

After conducting several experiments involving computerized eye trackers, they proved themselves right. Between 50 and 75 percent of the participants in their studies showed an eerie ability to “see” their own bodies moving in total darkness. The research, put together by scientists at the University of Rochester and Vanderbilt University, is published in the journal Psychological Science.

How were they so sure? “The only way you can produce smooth eye movements is if you’re following a target,” Tadin tells Shots. When our eyes aren’t tracking something very specific, they tend to jerk around randomly. “If you just try to make your eyes move smoothly, you can’t do it.” The researchers used this knowledge to test whether people could really distinguish their hand movements in the dark.

Text and Image via Neuromorphogenesis

h1

Craig Venter’s ‘Biological Teleportation’ Device

October 24, 2013

The pioneering American scientist, who created the world’s first synthetic life, is building a gadget that could teletransport medicine and vaccines into our homes or to colonists in space. Craig Venter reclines in his chair, puts his feet up on his desk and – gently stroking his milk chocolate-colored miniature poodle, Darwin, asleep in his arms – shares his vision of the household appliance of the future. It is a box attached to a computer that would receive DNA sequences over the internet to synthesize proteins, viruses and even living cells.

It could, for example, fill a prescription for insulin, provide flu vaccine during a pandemic or even produce phage viruses targeted to fight antibiotic-resistant bacteria. It could help future Martian colonists by giving them access to the vaccines, antibiotics or personalized drugs they needed on the red planet. And should DNA-based life ever be found there, a digital version could be transmitted back to Earth, where scientists could recreate the extraterrestrial organism using their own life-printing box.

“We call it a Digital Biological Converter. And we have the prototype,” says Venter. I am visiting the office and labs of Venter’s company Synthetic Genomics Incorporated (SGI) in La Jolla, a wealthy seaside enclave north of San Diego, California, where he also lives, because the pioneering American scientist dubbed biology’s “bad boy” wants to talk about his new book, released this week.

Text and Image via The Guardian. Continue THERE

h1

A Philosophy of Tickling

October 22, 2013

Aristotle famously defined man as the rational animal (zoon echon logon), and as the political animal (zoon politikon). But there are also passages in his work that indicate another less remarked upon, though no less profound, definition. In Parts of Animals, he writes: “When people are tickled, they quickly burst into laughter, and this is because the motion quickly penetrates to this part, and even though it is only gently warmed, still it produces a movement (independently of the will) in the intelligence which is recognizable. The fact that human beings only are susceptible to tickling is due to the fineness of their skin and to their being the only creatures that laugh.” Perhaps this notion of the “ticklish animal” was further elaborated in the second book of the Poetics, the lost treatise on comedy; indeed, the relationship between ticklish laughter and comic laughter remains an open question. Should tickling be investigated under the heading of comedy or of touch? Touch, Aristotle argues, is the most primary sense, and human beings are uniquely privileged in possessing the sharpest sense of touch thanks to the delicate nature of their skin. Though other animals have more advanced smell or hearing, “man’s sense of touch … excels that of all other animals in fineness.” We might view tickling as a side effect of the hyper-sensitivity of human touch. Our peculiar vulnerability to tickling is the price to be paid for more sophisticated and discriminating access to the world.

Excerpt via Cabinet. Continue THERE

h1

New Technique Holds Promise for Hair Growth

October 22, 2013

Scientists have found a new way to grow hair, one that they say may lead to better treatments for baldness. So far, the technique has been tested only in mice, but it has managed to grow hairs on human skin grafted onto the animals. If the research pans out, the scientists say, it could produce a treatment for hair loss that would be more effective and useful to more people than current remedies like drugs or hair transplants.

Present methods are not much help to women, but a treatment based on the new technique could be, the researchers reported Monday in Proceedings of the National Academy of Sciences.

Currently, transplants move hair follicles from the back of the head to the front, relocating hair but not increasing the amount. The procedure can take eight hours, and leave a large scar on the back of the head. The new technique would remove a smaller patch of cells involved in hair formation from the scalp, culture them in the laboratory to increase their numbers, and then inject them back into the person’s head to fill in bald or thinning spots. Instead of just shifting hair from one spot to another, the new approach would actually add hair.

The senior author of the study is Angela Christiano, a hair geneticist and dermatology professor at Columbia University Medical Center in New York, who has become known for her creative approach to research. Dr. Christiano’s interest in the science of hair was inspired in part by her own experience early in her career with a type of hair loss called alopecia areata. She has a luxuriant amount of hair in the front of her head, but periodically develops bald spots in the back. The condition runs in her family.

Excerpt from an article written by Denise Grady at NYT. Continue THERE

A picture taken on April 13, 2012 and released by the Tsuji Lab Research Institute for Science and Technology of the Tokyo University of Science shows a hairless mouse with black hair on its back at the laboratory in Noda, Chiba Prefecture.

Regenerative medicine repairs mice from top to toe. Three separate studies in mice show normal function can be restored to hair, eye and heart cells.

h1

Don’t Forget the Brain Is as Complex as All the World’s Digital Data

October 22, 2013

Twenty years ago, sequencing the human genome was one of the most ambitious science projects ever attempted. Today, compared to the collection of genomes of the microorganisms living in our bodies, the ocean, the soil and elsewhere, each human genome, which easily fits on a DVD, is comparatively simple. Its 3 billion DNA base pairs and about 20,000 genes seem paltry next to the roughly 100 billion bases and millions of genes that make up the microbes found in the human body.

And a host of other variables accompanies that microbial DNA, including the age and health status of the microbial host, when and where the sample was collected, and how it was collected and processed. Take the mouth, populated by hundreds of species of microbes, with as many as tens of thousands of organisms living on each tooth. Beyond the challenges of analyzing all of these, scientists need to figure out how to reliably and reproducibly characterize the environment where they collect the data.

“There are the clinical measurements that periodontists use to describe the gum pocket, chemical measurements, the composition of fluid in the pocket, immunological measures,” said David Relman, a physician and microbiologist at Stanford University who studies the human microbiome. “It gets complex really fast.”

Excerpt from an article by Emily Singer at Quanta. Continue THERE

h1

Jellyfish are taking over the seas, and it might be too late to stop them

October 16, 2013

Last week, Sweden’s Oskarshamn nuclear power plant, which supplies 10% of the country’s energy, had to shut down one of its three reactors after a jellyfish invasion clogged the piping of its cooling system. The invader, a creature called a moon jellyfish, is 95% water and has no brain. Not what you might call menacing if you only had to deal with one or two.

En masse, jellyfish are a bigger problem. “The [moon jellyfish swarm] phenomenon…occurs at regular intervals on Sweden’s three nuclear power plants,” says Torbjörn Larsson, a spokesperson for E.ON, which owns Oskarshamn. Larsson wouldn’t say how much revenue the shutdown cost his company, but noted that jellyfish also caused a shutdown in 2005.

Coastal areas around the world have struggled with similar jellyfish blooms, as these population explosions are known. These blooms are increasing in intensity, frequency, or duration, says Lucas Brotz, a jellyfish expert at the University of British Columbia.

Brotz’s research of 45 major marine ecosystems shows that 62% saw an uptick in blooms since 1950. In those areas, surging jellyfish numbers have caused power plant outages, destroyed fisheries and cluttered the beaches of holiday destinations. (Scientists can’t be certain that blooms are rising because historical data are too few.)

The proliferation of jellyfish appears in large part to be related to humans’ impact on the oceans. The toll we take on the seas may augur a new world order of jellyfish disasters, which, in turn, could devastate the global economy.

Text and Images via Quartz. Continue THERE

h1

Whole-body CT Scans of 137 Mummies: How Studying Mummies Could Cure Modern Diseases

October 10, 2013

By comparing diseases from then and now, researchers can learn how they spread. Maybe they can learn how to stop them, too.

Earlier this year, scientists published a study of whole-body CT scans of 137 mummies: ancient Egyptians and Peruvians, ancestral Puebloans of southwest America, and Unangan hunter-gatherers of the Aleutian Islands. They reported signs of athero­sclerosis—a dangerous artery hardening that can lead to heart attacks or stroke—in 34 percent of them. What struck the research team, led by Randall Thompson of Saint Luke’s Mid America Heart Institute in Kansas City, Missouri, was that it afflicted mummies from every group. Frank Rühli, head of the Swiss Mummy Project at the University of Zurich, also sees the condition in about 30 to 50 percent of the adult specimens he studies. The breadth of these findings suggests that atherosclerosis today may have less to do with modern excesses such as overeating and more with underlying genetic factors that seem present in a certain percentage of humans living almost anywhere in the world. Someday, identifying those genes could lead to new drugs for heart disease.

Ancient mummies can provide a wealth of information about the health of early civilizations, which may help us better treat diseases today. But because mummies are both rare and delicate, researchers have been limited in what they could do to them—and therefore what they could learn from them. Recent improvements of two medical tools—DNA sequencing, which can reveal microbial infections, and CT scanning—are letting paleopathologists diagnose mummies’ causes of death in detail. They’re now finding signs of everything from prostate cancer to malaria in mummies across the globe. By comparing the ancient forms of those diseases with their contemporary equivalents, researchers can learn how those diseases evolved, what makes them so harmful, and—possibly—how to stop them.

Text (Roxanne Khamsi) and Images (Getty Images/Kenneth Garrett) via Popular Science. Continue THERE

h1

Einstein’s Brain (…and the neuroscientist who studied it)

October 10, 2013

Marian Diamond began her graduate work in 1948 and was the first female student in the department of anatomy at UC Berkeley. The first thing she was asked to do when she got there was sew a cover for a large magnifying machine (?!?!?!?!).

“They didn’t know what to do with me because they weren’t used to having a woman. They thought I was there to get a husband. I was there to learn.”

Such challenges were not uncommon. Years later she requested tissue samples of Albert Einstein’s brain from a pathologist in Missouri. He didn’t trust her.

“He wasn’t sure that I was a scientist. This is one thing that you have to face being a woman. He didn’t think that I should be the one to be looking at Einstein’s brain.”

Marian persisted for three years, calling him once every six months, and received four blocks of the physicist’s brain tissue (about the size of a sugar cube).

Her research found that Einstein had twice as many glial cells as normal males — the discovery caused an international sensation as well as scientific criticism.

What are glial cells? Previously, scientists believe that neurons were responsible for thinking and glial cells were support cells in the brain. Now Researchers believe the glial cells play a critical role in brain development, learning, memory, aging and disease.

All text and Images via UC Research

h1

Neurons Could Outlive the Bodies That Contain Them

October 10, 2013

Most of your body is younger than you are. The cells on the topmost layer of your skin are around two weeks old, and soon to die. Your oldest red blood cells are around four months old. Your liver’s cells will live for around 10 to 17 months old before being replaced. All across your organs, cells are being produced and destroyed. They have an expiry date.

In your brain, it’s a different story. New neurons are made in just two parts of the brain—the hippocampus, involved in memory and navigation, and the olfactory bulb, involved in smell (and even then only until 18 months of age). Aside from that, your neurons are as old as you are and will last you for the rest of your life. They don’t divide, and there’s no turnover.

But do neurons have a maximum lifespan, just like skin, blood or liver cells? Yes, obviously, they die when you die, but what if you kept on living? That’s not a far-fetched question at a time when medical and technological advances promise to prolong our lives well past their usual boundaries. Would we reach a point when our neurons give up before our bodies do?

Image above: Stainless steel sculpture “Neuron” by Roxy Paine. Outside the Museum of Contemporary Art, Sydney.
Excerpt from an article written by Ed Yong at NATGEO. Continue THERE

h1

Boyan Slat: The Ingenious 19-year-old that Developed a Plan to Clean up Oceans in 5 Years

September 20, 2013

With millions of tons of garbage dumped into the oceans annually and repeat incidence of oil spills like the Deepwater Horizon Disaster, it’s the Ocean which has taken the brunt of unsustainable methods from man. In effect, it’s estimated almost 100,000 marine animals are killed due to debris entanglement and continually rising pollution.

To a degree, individual lessening of consumerism and utilizing sustainable methods to re-use and eliminate waste is very beneficial. However, reducing the already-toxic state of the Earth is the biggest concern of environmentalists and engineers, seeking to utilize the technological advances already available. To this avail, it was 19-year-young Boyan Slat that ingeniously created the Ocean Array Plan, a project that could remove 7,250,000 tons of plastic from the world’s oceans in just five years.

Slat’s idea consists of an anchored network of floating booms and processing platforms that could be dispatched to garbage patches around the world. Working with the flow of nature, his solution to the problematic shifting of trash is to have the array span the radius of a garbage patch, acting as a giant funnel as the ocean moves through it. The angle of the booms would force plastic in the direction of the platforms, where it would be separated from smaller forms, such as plankton, and be filtered and stored for recycling. The issue of by-catches, killing life forms in the procedure of cleaning trash, can be virtually eliminated by using booms instead of nets and it will result in a larger areas covered. Because of trash’s density compared to larger sea animals, the use of booms will allow creatures to swim under the booms unaffected, reducing wildlife death substantially.

Excerpt from an article written by Amanda Froelich at True Activist. Continue THERE

h1

Cosmic bling: When two dead stars collide, gold is created.

September 17, 2013

The announcement was short. It lasted only a fraction of second — a blink of an eye. But a spacecraft in Earth’s orbit, keeping an eye on such events, captured it on June 3 this year. The announcement may have been brief, but it told us that two exotic dead stars, called neutron stars, have collided with each other. This is a relatively rare event, but it bears good news for the merchants in the Sona bazaar. This collision has created gold — lots of it.

But before you head over to Sona bazaar, you should know that this particular collision happened in a galaxy so far away that it has taken light — traveling at a stupendous speed of 186,000 miles every second — four billion years to reach us! In astronomical terms, this collision happened in a galaxy four billion light-years away. In comparison, light from our Sun gets to us in 8 minutes, and is therefore only 8 light-minutes away. The distance of billions of light-years doesn’t intimidate astronomers, as they routinely study events and objects that are even farther away than this particular galaxy. The significance of this event, however, resides in the fact that for the first time, astronomers have been able to study light from collisions that may help us understand the way elements like gold are created in the universe.

Before we get too caught up in the cosmic glamour, we should remember that almost all of the elements that make our bodies were cooked up inside the stars: the carbon in our DNA, oxygen in our lungs, and iron in our blood. Hydrogen in the water molecule, on the other hand, is a leftover from processes in the early history of the universe. The classic quote from the late astronomer Carl Sagan is indeed true: “We are made up of star stuff”.

Excerpt from an article written by Salman Hameed at the IHT. Continue THERE

h1

This Insect Has The Only Mechanical Gears Ever Found in Nature

September 17, 2013

To the best of our knowledge, the mechanical gear—evenly-sized teeth cut into two different rotating surfaces to lock them together as they turn—was invented sometime around 300 B.C.E. by Greek mechanics who lived in Alexandria. In the centuries since, the simple concept has become a keystone of modern technology, enabling all sorts of machinery and vehicles, including cars and bicycles.

As it turns out, though, a three-millimeter long hopping insect known as Issus coleoptratus beat us to this invention. Malcolm Burrows and Gregory Sutton, a pair of biologists from the University of Cambridge in the U.K., discovered that juveniles of the species have an intricate gearing system that locks their back legs together, allowing both appendages to rotate at the exact same instant, causing the tiny creatures jump forward.

Excerpt from an article written at The Smithsonian. Continue THERE

h1

Miniature brains grown in test tubes – a new path for neuroscience?

September 10, 2013

Scientists have grown miniature human brains in test tubes, creating a “tool” that will allow them to watch how the organs develop in the womb and, they hope, increase their understanding of neurological and mental problems.

Just a few millimetres across, the “cerebral organoids” are built up of layers of brain cells with defined regions that resemble those seen in immature, embryonic brains.

The scientists say the organoids will be useful for biologists who want to analyse how conditions such as schizophrenia or autism occur in the brain. Though these are usually diagnosed in older people some of the underlying defects occur during the brain’s early development.

Human brain ‘organoid’ grown from human pluripotent stem cells. This is a cross-section of the entire organoid showing development of different brain regions. All cells are in blue, neural stem cells in red, and neurons in green. Photograph: Madeline A Lancaster.

The organoids are also expected to be useful in the development and testing of drugs. At present this is done using laboratory animals or isolated human cells; the new organoids could allow pharmacologists to test drugs in more human-like settings.

Scientists have previously made models of other human organs in the lab, including eyes, pituitary glands and livers.

In the latest work researchers at the Institute of Molecular Biotechnology in Vienna started with stem cells and grew them into brain cells in a nourishing gel-like matrix that recreated conditions similar to those inside the human womb. After several months the cells had formed spheres measuring about 3-4mm in diameter.

Text by Alok Jha, science correspondent at The Guardian. Continue article THERE

h1

Fascinating Theory On Life’s Origins Getting NASA’s Attention and Money

September 10, 2013

A unique theory about how life arose on Earth may reveal clues to whether and where else it might have arisen in the universe.

Does life exist elsewhere or is our planet unique, making us truly alone in the universe? Much of the work carried out by NASA, together with other research agencies around the world, is aimed at trying to come to grips with this great and ancient question.

“Of course, one of the most powerful ways to address this question, and a worthy goal in its own right, is to try to understand how life came to be on this planet,” said Elbert Branscomb, an affiliate faculty member at the Institute for Genomic Biology (IGB) at the University of Illinois at Urbana-Champaign. “The answer should help us discover what is truly necessary to spark the fateful transition from the lifeless to the living, and thereby, under what conditions and with what likelihood it might happen elsewhere.”

While many ideas about this fundamental question exist, the real challenge is to move beyond speculation to experimentally testable theories. A novel and potentially testable origin-of-life theory—first advanced more than 25 years ago by Michael Russell, a research scientist in Planetary Chemistry and Astrobiology at the NASA Jet Propulsion Laboratory—was further developed in a recent paper published in Philosophical Transactions of the Royal Society B (PTRSL-B), the world’s first science journal, by Russell, Wolfgang Nitschke, a team leader at the National Center for Scientific Research in Marseille, France, and Branscomb.

All text via Dan Satterfield at AGU Blogosphere. Read full article HERE

h1

Cancer’s origins revealed

September 8, 2013

Researchers have provided the first comprehensive compendium of mutational processes that drive tumour development. Together, these mutational processes explain most mutations found in 30 of the most common cancer types. This new understanding of cancer development could help to treat and prevent a wide-range of cancers.

Each mutational process leaves a particular pattern of mutations, an imprint or signature, in the genomes of cancers it has caused. By studying 7,042 genomes of people with the most common forms of cancer, the team uncovered more than 20 signatures of processes that mutate DNA. For many of the signatures, they also identified the underlying biological process responsible.

All cancers are caused by mutations in DNA occurring in cells of the body during a person’s lifetime. Although we know that chemicals in tobacco smoke cause mutations in lung cells that lead to lung cancers and ultraviolet light causes mutations in skin cells that lead to skin cancers, we have remarkably little understanding of the biological processes that cause the mutations which are responsible for the development of most cancers.

Read full article HERE

h1

Enjoy your food. Disposable food bowl.

September 8, 2013

Designer Michal Marko created a disposable food bowl concept (with minimum environmental impact) while teaching society about new biodegradable materials. On the label it states: “Enjoy your food. Then put the seeds from under the label with gravel into the bowl and let it grow. After a week, plant bowl with a herb into the ground. The bowl will degrade and you can grown your own herb.”

h1

Techné/Dance/Dechné/Tance: body+motion+computation

August 2, 2013

This is only a small selection of recent dance work and therefore is a omitting a long list of dance collectives, performance artist, and other experimental movers/thinkers who have contribute tremendously to the development of what you will see below. Thanks to all of them.

SERAPH(2010): Created by Robby Barnett, Molly Gawler, Renée Jaworski, and Itamar Kubovy in collaboration with the MIT Distributed Robotics Laboratory, directed by Prof. Daniela Rus and including current and former MIT PhD students William Selby, Brian Julian, Daniel Soltero, Andrew Marchese, and Carrick Detweiler (graduated, now assistant professor at University of Nebraska, Lincoln). Music: Schubert Trio no.2 in E Flat, Op.100. ll Andante con moto

Anarchy Dance Theatre (From the project description): The collaboration project between Anarchy Dance Theatre and Ultra Combos focused on building up a new viewer centered performance venue. In this space all movements including the dancers’ and audience’s can be detected and interact with each other through visual effect. The audience is not merely watching the show but actively participating in it. More HERE

Trinity (From the project description): a dance performance with high levels of real time interaction and close relationship between: dance, sound and visuals.

The interactive link is done through a videocamera installed above the stage and under infrared lighting. Besides positional tracking the project is focus in measuring movement qualities as: forces and directions, accelerations, stage position, velocity and body area.

The performance has been created and executed in live using the environment MAX/MSP/JITTER by Cycling74 and the computer vision library CV.JIT by Jean-Marc Pelletier. More HERE

Dance and Projection Mapping from Daito Manabe (http://www.daito.ws/#2)

Instrumental Bodies (From the project description): Researchers at the Input Devices and Music Interaction Lab at McGill University recently released a video documentary on the design and fabrication of “prosthetic digital instruments” for music and dance. These instruments are the culmination of a three-year long project in which the designers worked closely with dancers, musicians, composers and a choreographer. The goal of the project was to develop instruments that are visually striking, utilize advanced sensing technologies, and are rugged enough for extensive use in performance.

The complex, transparent shapes are lit from within, and include articulated spines, curved visors and ribcages. Unlike most computer music control interfaces, they function both as hand-held, manipulable controllers and as wearable, movement-tracking extensions to the body. Further, since the performers can smoothly attach and detach the objects, these new instruments deliberately blur the line between the performers’ bodies and the instrument being played. More HERE

Cadence I – IV (The artist’s description): The institution of the military is steeped in performative traditions, rituals and practices. Indeed the collective military body can be thought of as being characterised by a carefully calibrated choreography of movement.

Cadence (2013) is a series of four new-media artworks whose subject sits between war and performance. In these new video works, the figure of the Australian, US and Taliban soldier is placed within formal landscapes appropriated from pro-military cinema and military training simulators.

Rather than enacting standard military gestures or postures, the simulated soldier performs a slow and poetic dance. The usual politics of movement, discipline and posture of the military body are subverted, and instead rendered soft and expressive.

The seductive visual rhythm of cadence, camouflage and natural mimicry in these works gesture towards the dark mysticism of military history, where soldiers and psychedelics have often combined to disrupt landscapes and produce mystic escapes.

Technological backstage – Mr & Ms Dream a performance by Pietragalla Derouault Company & Dassault Systèmes: a behind-the-scenes process, showing how a dance piece that uses projection and real-time processing is put together.

Gideon Obarzaneks Digital Moves: Hailed by The Australian as the countrys best modern dance company, choreographer Gideon Obarzaneks Chunky Move dazzles audiences with its use of site-specific installations and interactive sound and light technologies. Obarzanek’s avant-garde performances explore the tensions between the rational world we live in and richness of our imagination.

Dance techne: Kinetic bodily logos and thinking in movement.

…and a beautiful composition by Ryoji Ikeda called Forest Of Memories. Taken from dumb type’s memorandum. A performance that brings their unique audiovisual architectonics to an investigation of memory.

Memorandum (Text via Epidemic): Combining elements of multimedia, dance and fragmented narrative, memorandum explores the hazy dimensions of recall that ground and disquietly erode our experience minute-by-minute.
The set is simple – almost an abstraction. A bare stage is bisected by an impenetrable but translucent wall, a screen onto which will be projected a barrage of images.
Amidst a cascade of white noise and REM-speed visual flashes, the performers break down the motions into displaced gestures in silhouette.
Penetrating deeper beneath the surface of moment, dancers drift in a slow sensual subconscious slidestep through the “forest of memory” haunted by voices and desires.

Unnoticed by waking reason, a lone witness/observer records evidence of the scene and is repeatedly eliminated.
Whereupon three figures cycle through three different accelerated subroutines of emotion, instinct and intellect, scarcely intersecting, each oblivious to the oblique “orbital” workings of the other.
Until finally, the dance emerges onto a primal oceanic frieze simultaneously flooded and exhausted of meanings.

h1

Tears Served as a Means of Communication Before the Evolution of Language

August 2, 2013

Leading expert in neurology Michael Trimble, British professor at the Institute of Neurology in London, examines the physiology and the evolutionary past of emotional crying.

Trimble explains that biologically, tears are important to protect the eye. They keep the eyeball moist, flush out irritants and contain certain proteins and substances that keep the eye healthy and fight infections. He explains that in every other animal on planet Earth, tears seem to only serve these biological purposes.

However, in humans, crying or sobbing, bawling or weeping seems to serve another purpose: communicating emotion. Humans cry for many reasons- out of joy, grief, anger, relief and a variety of other emotions. However, our tears are most frequently shed out of sadness. Trimble said that it was this specific communicative nature of human crying that piqued his interest.

“Humans cry for many reasons,” he told Scientific American. “But crying for emotional reasons and crying in response to aesthetic experiences are unique to us.”

Continue at Medicaldaily

h1

The Role of Bodily Perception in Emotion: In Defense of an Impure Somatic Theory

July 14, 2013

In this paper, we develop an impure somatic theory of emotion, according to which emotions are constituted by the integration of bodily perceptions with representations of external objects, events, or states of affairs. We put forward our theory by contrasting it with Prinz’s (2004) pure somatic theory, according to which emotions are entirely constituted by bodily perceptions. After illustrating Prinz’s theory and discussing the evidence in its favor, we show that it is beset by serious problems—i.e., it gets the neural correlates of emotion wrong, it isn’t able to distinguish emotions from bodily perceptions that aren’t emotions, it cannot account for emotions being directed towards particular objects, and it mischaracterizes emotion phenomenology. We argue that our theory accounts for the empirical evidence considered by Prinz and solves the problems faced by his theory. In particular, we maintain that our theory gives a unified and principled account of the relation between emotions and bodily perceptions, the intentionality of emotions, and emotion phenomenology.

READ HERE

h1

Plants perform molecular maths

July 9, 2013

As if making food from light were not impressive enough, it may be time to add another advanced skill to the botanical repertoire: the ability to perform — at least at the molecular level — arithmetic division.

Computer-generated models published in the journal eLife illustrate how plants might use molecular mathematics to regulate the rate at which they devour starch reserves to provide energy throughout the night, when energy from the Sun is off the menu. If so, the authors say, it would be the first example of arithmetic division in biology.

But it may not be the only one: many animals go through periods of fasting — during hibernations or migrations, for example — and must carefully ration internal energy stores in order to survive. Understanding how arithmetic division could occur at the molecular level might also be useful for the young field of synthetic biology, in which genetic engineers seek standardized methods of tinkering with molecular pathways to create new biological devices. Text and Image via NATURE. Continue THERE

h1

C-MOULD: living paints

July 9, 2013

C-MOULD, the world’s largest collection of microorganisms for use in the arts, with over 50 different kinds of microorganism. We have bacteria and fungi that glow in ethereal shades of green and blue light, bacteria that make gold and electrically conductive nanowires, and bacteria that produce biotextiles. We also possess the largest collection of pigmented bacteria. Here is the palette of living colours that is available through C-MOULD. Behind the obvious colour, each bacterium has its own unique personality and history (see below) and when used in paintings each one adds it own character to the work. Text and image via Exploring The Invisible. Continue THERE for more info.

h1

About FACE

July 8, 2013

For half a century, one theory about the way we experience and express emotion has helped shape how we practice psychology, do police work, and even fight terrorism. But what if that theory is wrong?

Forty-six years ago a young San Francisco–based cowboy of a psychologist named Paul Ekman emerged from the jungle with proof of a powerful idea. During the previous couple of years, he had set out trying to prove a theory popularized in the 19th century by Charles Darwin: that people of all ages and races, from all over the world, manifest emotions the same way. Ekman had traveled the globe with photographs that showed faces experiencing six basic emotions—happiness, sadness, fear, disgust, anger, and surprise. Everywhere he went, from Japan to Brazil to the remotest village of Papua New Guinea, he asked subjects to look at those faces and then to identify the emotions they saw on them. To do so, they had to pick from a set list of options presented to them by Ekman. The results were impressive. Everybody, it turned out, even preliterate Fore tribesmen in New Guinea who’d never seen a foreigner before in their lives, matched the same emotions to the same faces. Darwin, it seemed, had been right. Continue at BOSTON MAGAZINE

h1

The Great Work of the Metal Lover: A strain of bacteria that POOPS GOLD

June 13, 2013

Historically, Magnum Opus, or The Great Work, was an alchemical process that incorporated a personal, spiritual and chemical method for creating the Philosopher’s Stone, a mysterious red colored substance that was capable of transmuting base matter into the noble metal of gold. Discovering the principals of the Philosopher’s Stone was one of the defining and at the same time seemingly unobtainable objectives of Western alchemy.

The Great Work of the Metal Lover is an artwork that sits at the intersection of art, science and alchemy, re-examining the problem of transmutation through the use of modern microbiological practice and thus solving the ancient riddle.

Gold production is accomplished by the pairing of a highly specialized metallotolerant extremophilic bacterium and an engineered atmosphere contained within a customized alchemical bioreactor. The extreme minimal ecosystem within the bioreactor forces the bacteria to metabolize high concentrations of toxic AuCl3 (gold chloride), turning soluble gold into usable 24K gold.

All text and Images via Adam Brown. Continue THERE

h1

What Cannibals Could Teach Us About Evolution

May 13, 2013

In the past few decades, scientists studying the eating habits of Earth’s creatures have noticed something strange: the babies of several species, from tiger sand sharks to fruit flies, are eating each other.

Thing is, they aren’t freaks of nature. And in fact, the mechanisms behind animal cannibalism are helping scientists ask–and answer–some important evolutionary questions. These three recent studies provide a glimpse into this gruesome diet and what it means for evolution.

Why paternity might still matter after fertilization

Sand tiger sharks have been known to have cannibalistic embryos since the 1980s, when detailed autopsies revealed embryos in the stomachs of other shark embryos. But a new study published in Biological Letters could give some clues as to why.

Female sand tiger sharks aren’t the most faithful–they tend to mate with multiple male partners. And if you’re a male sand tiger shark trying to further your lineage, it’s not just about the speed and strength of sperm. The competition continues even after the eggs turn to embryos. After about five months of gestation, the embryo to first hatch from its egg in utero (the female sand tiger shark has two uteri) begins to feed on its smaller siblings–specifically those fathered by a different male. Some litters may start at 12 but this alpha embryo will eat all but one, leaving its brother or sister from the same mister alive. So despite the litters starting out with various fathers, the offspring that make it through the gestational massacre tend to be from the same father–and they’re large and strong enough to survive potential predators after birth. “It’s exactly the same sort of DNA testing that you might see on Maury Povich to figure out how many dads there are,” Stony Brook University marine biologist and study author Demian Chapman told LiveScience.

Text and Image via POPSci. Continue THERE

h1

Inorganic Flora: Macoto Murayama’s Intricate Blueprints of Flowers

May 13, 2013

The worlds of architecture and scientific illustration collided when Macoto Murayama was studying at Miyagi University in Japan. The two have a great deal in common, as far as the artist’s eye could see; both architectural plans and scientific illustrations are, as he puts it, “explanatory figures” with meticulous attention paid to detail. “An image of a thing presented with massive and various information is not just visually beautiful, it is also possible to catch an elaborate operation involved in the process of construction of this thing,” Murayama once said in an interview.

Continue at The Smithsonian HERE

h1

How A Virus Hid In Our Genome For Six Million Years

May 13, 2013

In the mid-2000s, David Markovitz, a scientist at the University of Michigan, and his colleagues took a look at the blood of people infected with HIV. Human immunodeficiency viruses kill their hosts by exhausting the immune system, allowing all sorts of pathogens to sweep into their host’s body. So it wasn’t a huge surprise for Markovitz and his colleagues to find other viruses in the blood of the HIV patients. What was surprising was where those other viruses had come from: from within the patients’ own DNA.

HIV belongs to a class of viruses called retroviruses. They all share three genes in common. One, called gag, gives rise to the inner shell where the virus’s genes are stored. Another, called env, makes knobs on the outer surface of the virus, that allow it to latch onto cells and invade them. And a third, called pol, makes an enzyme that inserts the virus’s genes into its host cell’s DNA.

It turns out that the human genome contains segments of DNA that match pol, env, and gag. Lots of them. Scientists have identified 100,000 pieces of retrovirus DNA in our genes, making up eight percent of the human genome. That’s a huge portion of our DNA when you consider that protein coding genes make up just over one percent of the genome.

Excerpt form an article written by Carl Zimmer. Continue HERE

h1

Russian billionaire reveals real-life ‘avatar’ plan – and says he will upload his brain to a hologram and become immortal by 2045

May 13, 2013

32 year-old Dmitry Itskov believes technology will allow him to live forever in a hologram body. His ’2045 initiative’ is described as the next step in evolution, and over 20,000 people have signed up on Facebook to follow its progress, with global conferences planned to explore the technology needed.

‘We are in the process of creating focus groups of experts,’ said Itskov. ‘Along with these teams, we will prepare goal statements and research programs schedules.’ The foundation has already planned out its timeline for getting to a fully holographic human, and claims it will be ready to upload a mind into a computer by 2015, a timeline even Itskov says is ‘optimistic’.

‘The four tracks and their suggested deadlines are optimistic but feasible,’ he said of the foundation’s site.
‘This is our program for the next 35 years, and we will do our best to complete it.’
The ultimate aim is for a hologram body.
‘The fourth development track seems the most futuristic one,’ said Itskov.
‘It’s intent is to create a holographic body. Indeed, its creation is going to be the most complicated task, but at the same time could be the most thrilling problem in the whole of human evolution.’

Continue HERE

h1

How to Make an Implant that Improves the Brain

May 13, 2013

The abilities to learn, remember, evaluate, and decide are central to who we are and how we live. Damage to or dysfunction of the brain circuitry that supports these functions can be devastating, leading to Alzheimer’s, schizophrenia, PTSD, or many other disorders. Current treatments, which are drug-based or behavioral, have limited efficacy in treating these problems. There is a pressing need for something more effective.

One promising approach is to build an interactive device to help the brain learn, remember, evaluate, and decide. One might, for example, construct a system that would identify patterns of brain activity tied to particular experiences and then, when called upon, impose those patterns on the brain. Ted Berger, Sam Deadwyler, Robert Hampsom, and colleagues have used this approach. They are able to identify and then impose, via electrical stimulation, specific patterns of brain activity that improve a rat’s performance in a memory task. They have also shown that in monkeys stimulation can help the animal perform a task where it must remember a particular item.

Their ability to improve performance is impressive. However, there are fundamental limitations to an approach where the desired neural pattern must be known and then imposed. The animals used in their studies were trained to do a single task for weeks or months and the stimulation was customized to produce the right outcome for that task. This is only feasible for a few well-learned experiences in a predictable and constrained environment.

Text (Loren M. Frank) and Image via MIT Technology Review. Continue HERE

h1

Researchers Identify The Key to Aging In The Hypothalamus

May 4, 2013

An exciting new study published in the prestigious journal Nature shows for the first time that manipulation of a brain chemical in a single region influences lifespan.

The researchers at Albert Einstein College of Medicine measured the activity of a molecule called NF-κB in the brains of mice. Specifically they looked as levels of NF-κB in an area of the brain called the hypothalamus. This region is considered a deep old brain region and is involved in circadian rhythm, sleep/wake, hunger and thirst functioning.

NF-κB itself is a protein that controls DNA transcription and is involved in stress and inflammatory responses.

They discovered that NF-κB levels became higher as the mice age, and the high levels were due to increasing age-related inflammation in the hypothalamus. When they blocked NF-κB activation, the mice lived longer. Increasing NF-κB activity reduced lifespan.

Furthermore inhibition of NF-κB produced dramatically reduced evidence of cognitive and motor decline in the animals suggesting the molecule stimulates the development of disease.

They were also able to increase the mean and maximum lifespan by 23% and 20% respectively in middle aged mice by inhibiting IKK-β, an enzyme that activates NF-κB.

It is also reported that NF-κB blocks gonadotropin releasing hormone (GnRH), and by giving mice GnRH aging was slowed.

This research is being hailed as a major breakthrough in aging and could quickly lead to real therapies to prolong human lifespan, which could even simply involve regular administration of GnRH.

It suggests that cumulative stress and inflammation in the body and the hypothalamus in particular signals increased production of NF-kB in the hypothalamus which then accelerates aging leading to decline and death. It also proves that a small crucial brain region may control aging in the whole body.

The authors conclude:

To summarize, our study using several mouse models demonstrates that the hypothalamus is important for systemic ageing and lifespan control. This hypothalamic role is significantly mediated by IKK-band NF-kB-directed hypothalamic innate immunity involving microglia–neuron crosstalk. The underlying basis includes integration between immunity and neuroendocrine of the hypothalamus, and immune inhibition and GnRH restoration in the hypothalamus or the brain represent two potential strategies for combating ageing-related health problems.

Full text HERE. Text and Image via Extreme Longevity

h1

Synthetic biologists and conservationists open talks

April 30, 2013

Female Rheobatrachus silus giving birth through the mouth.

Australian scientists made headlines last month when they revealed that they were close to cloning a frog, Rheobatrachus silus, last seen in the wild three decades ago. If they succeed, it may take another emerging technology to keep that frog alive.

Synthetic biology aims to endow organisms with new sets of genes and new abilities. Along with cloning, it has been portrayed in the press as a hubristic push to do fantastical things: bring back woolly mammoths or resurrect the passenger pigeons that darkened the skies of North America before they were eradicated by nineteenth-century settlers.

But at a first-of-its-kind meeting, held on 9–11 April at the University of Cambridge, UK, leading conservationists and synthetic biologists discussed how the technology could be applied in less fanciful ways to benefit the planet: to produce heat-tolerant coral reefs, pollution-sensing soil microbes and ruminant gut microbes that don’t belch methane. Also on the list were ways to help frogs to overcome chytridiomycosis, the fungal disease threatening amphibians worldwide that is thought to have contributed to the extinction of R. silus.

Excerpt from an article written by Ewen Callaway, at Nature. Continue HERE